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A nonadiabatic molecular dynamics is implemented in the framework of the time-dependent density functional
tight binding method (TDDFTB) combined with Tully’s stochastic surface hopping algorithm. The applicability
of our method to complex molecular systems is illustrated on the example of the ultrafast excited state dynamics
of microsolvated adenine. Our results demonstrate that in the presence of water, upon initial excitation to the
S3 (π-π*) state at 260 nm, an ultrafast relaxation to the S1 state with a time constant of 16 fs is induced,
followed by the radiationless decay to the ground state with a time constant of 200 fs.

Introduction

The ultrafast molecular dynamics in the excited electronic
states is characterized by nonadiabatic processes in which the
coupling between nuclear and electronic motion leads to
nonradiative transitions between electronic states. Such nonra-
diative transitions are responsible for fundamental photochemical
processes such as internal conversion, isomerization, electron
transfer, proton transfer, and so forth1-4 which are ubiquitous
in photochemistry. The theoretical exploration of coupled
electron-nuclear dynamics in complex molecular systems
requires the development of accurate and efficient methods for
the simulation of nonadiabatic dynamics. One of the most
efficient approaches is based on the mixed quantum-classical
dynamics, in which the nuclear motion is described by classical
trajectories propagated using quantum chemical ab initio mo-
lecular dynamics “on the fly”, combined with the stochastic
Tully’s surface hopping (TSH) procedure5 for the description
of nonadiabatic electronic transitions. The forces and nonadia-
batic couplings needed to propagate classical nuclear trajectories
can be obtained using the whole spectrum of methods such as
ab initio “frozen ionic bond” approximation,6 ab initio confi-
giration interaction (CI),7 restricted open-shell Kohn-Sham
density functional theory (DFT),8 linear response time-dependent
density functional theory (TDDFT),9-13 as well as semiempirical
methods for the electronic structure.14-17 In particular, the
TDDFT represents an efficient, generally applicable method for
the treatment of the optical properties in complex systems, and
its performance and accuracy have been steadily improved.18

Therefore, a variety of methods for nonadiabatic dynamics in
the framework of TDDFT have been developed and successfully
applied.8-13

A particularly attractive possibility to extend the applicability
of the TDDFT nonadiabatic dynamics to even larger systems
such as biomolecules interacting with the environment or
complex nanostructures is to use the approximate tight binding

density functional theory (DFTB).19-22 The self-consistent
DFTB has been shown to provide a quite accurate description
of ground state properties such as molecular geometries,
vibrational frequencies, and reaction energies.23 Furthermore,
the time-dependent linear response formalism24 and analytic
energy derivatives have been implemented in the framework of
DFTB,25 allowing for the description of the optical response of
complex molecular systems. The comparison of the accuracy
of the TDDFTB approach with full TDDFT shows a very good
agreement for singlet electronic states, while the performance
of TDDFTB for triplet states shows slightly larger systematic
error.26 It should be noted that while TDDFTB reproduces the
accuracy of the TDDFT method, it also shares all of its
deficiencies, such as the inability to describe accurately excited
states with long range charge transfer character or excited states
with significant contribution of double or higher electron
excitations. However, despite these drawbacks, the TDDFTB
method combined with nonadiabatic dynamics provides an
efficient method for the simulation of ultrafast excited state
processes in complex systems including their environment. For
example, the inclusion of the solvent effects in the excited
state dynamics of biochromophores is of particular importance
since the presence of the solvent can change both stationary
optical properties as well as the mechanism and the time scales
of the nonradiative relaxation processes. Recently, the excited
state properties of solvated DNA nucleobases have been
investigated in the framework of TDDFT combined with the
polarized continuum model.27,28 These studies have revealed that
the presence of water can reverse the ordering of the π-π*
and n-π* states in uracil, leading to different mechanisms for
the nonradiative relaxation.27 However, the realistic picture of
the nonadiabatic dynamics of solvated biochromophores can
only be obtained if at least a part of the solvent from the first
solvation shell is explicitly included in the dynamical simulations.

The ultrafast dynamics of DNA bases has been intensively
studied in recent years in order to reveal molecular features
which are responsible for their intrinsic photostability.29 In the
case of adenine, experimental studies have shown that isolated
adenine in the gas phase returns nonradiatively to the ground
state within about 1 ps after photoexcitation of the strongly
absorbing π-π* electronic state.30-32 In order to identify the
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mechanism of the nonradiative relaxation, several theoretical
studies have been performed with the aim to assign the conical
intersections which dominate the relaxation process.33-36 Re-
cently, mixed quantum-classical dynamics simulations, both
using high-level ab initio multireference CI37 as well as
semiempirical CI,15 have been performed, giving a dynamical
picture of the relaxation process. According to these studies,
the relaxation proceeds in a two-step mechanism. First, the
initially excited S3 state relaxes via the S2 state to the lowest S1

excited state with a time constant of 22 fs. The second, slower
step corresponds to the transiton from the S1 state to the
electronic ground state with a time constant of about 500 fs.

A fundamental issue in the photophysics of nucleobases is
the role played by water. The experimental study of adenine in
solution38 using femtosecond transient absorption spectrocopy
has revealed that the lifetime of the S1 state of adenine in water
of 180 fs is 50-100% shorter than that in acetonitrile (440 fs)
and is, in general, much shorter than that in the gas phase (1.2
ps).32 This shows that the realistic description of nucleobase
dynamics requires the explicit inclusion of solvent effects, which
is a challenging task from the theoretical point of view. We
show in this paper that the TDDFTB nonadiabatic dynamics
represents a general and highly efficient method which can be
used to simulate the nonadiabatic dynamics of biochromophores
solvated by a large number of water molecules which are not
accessible to high-level ab initio methods. Due to its accuracy,
which is comparable to that of the full TDDFT method,
TDDFTB nonadiabatic dynamics can be used to investigate
nonadiabatic processes in a whole variety of complex systems,
such as solvated biochromophores, photoreceptors, or nano-
structures, which are of interest for material science applications.

In this paper, we present the formulation of nonadiabatic
dynamics in the framework of the tight binding time-dependent
density functional theory combined with the TSH method. As
an illustration of the applicability of our method to large systems
of biological relevance, we have chosen to study the ultrafast
nonradiative relaxation of the microsolvated DNA base adenine.

The paper is structured as follows: In the Theoretical
Formulation section, the theoretical approach is outlined.
Subsequently, in the Results and Discussion, we present the
application of the method to the ultrafast excited state dynamics
of microsolvated adenine. Finally, the conclusions and outlook
are given.

Theoretical Formulation

The theoretical formulation of the nonadiabatic dynamics “on
the fly” in the framework of the TDDFTB method combined
with Tully’s surface hopping method is conceptually similar to
the one presented previously for the full TDDFT method.11,12

In this approach, the electronic wave function is represented in
the basis of adiabatic Born-Oppenheimer states, which are
parametrically dependent on the classical nuclear trajectory R(t)
according to

where |ΨK(r;R(t))〉 represents the adiabatic electronic state K
while the CK(t) are the time-dependent expansion coefficients.
The nuclear trajectories R(t) are obtained by solving the classical
Newton’s equations of motion. The time evolution of the
coefficients CK(t) along a given classical trajectory can be
obtained by solving the time-dependent Schrödinger equation

where EK represents the energy of the electronic state K and
the second term corresponds to the nonadiabatic coupling DKI

between the states I and K. The latter can be approximately
calculated using the finite difference approximation for the time
derivative

where ∆ is the time step used for the integration of the classical
Newton’s equations of motion.

The time-dependent coefficients CK(t), which are obtained
by the numerical solution of eq 2, can be used to calculate the
hopping probabilities PKI needed for switching the trajectory
between the electronic states in the framework of the TSH
procedure. In our approach (cf. ref 12), we calculate the hopping
probabilities at each time-step during the integration of eq 2
according to

The ∆τ represents the time-step used for the numerical
integration of eq 2 for the electronic state coefficients and is
typically much smaller than the nuclear time-step ∆.

The nonadiabatic coupling DKI together with the forces acting
on the nuclei in the excited electronic states are the essential
quantities needed to perform the nonadiabatic dynamics simula-
tions and are calculated in the framework of the TDDFTB
method. In the following, we will give a short outline of the
TDDFTB method with the emphasis on the calculation of the
nonadiabatic couplings.

(i) Nonadiabatic Coupling within the Linear Response
TDDFTB Method. The essential idea of the DFTB method is
to perform a second-order perturbation expansion of the DFT
total energy functional around the given reference density F0(r)21

where Ĥ0 is the Kohn-Sham Hamiltonian evaluated at the
reference density, φi are the Kohn-Sham (KS) orbitals, ni are
the occupation numbers, fxc[r,r′] is the Coulomb exchange-
correlation kernel

and Exc, Vxc, and Eii represent the exchange-correlation energy
and potential and the core-core repulsion, respectively. The
second-order term in eq 5 is decomposed in atom-centered
monopol contributions of the form

|Ψ(r;R(t))〉 ) ∑
K

CK(t)|ΨK(r;R(t))〉 (1)

ip
dCK(t)

dt
) EKCK(t) - ip∑

I
〈ΨK(r;R(t))|∂ΨI(r;R(t))

∂t 〉CI(t)

(2)

DKI(R(t + ∆
2 )) ≈ 1

2∆
(〈ΨK(r;R(t))|ΨI(r;R(t + ∆))〉 -

〈ΨK(r;R(t + ∆))|ΨI(r;R(t))〉) (3)

PKI(τ) ) -2
∆τ[Re(CK*(τ)CI(τ)DKI(τ))]

CK(τ)CK*(τ)
(4)

E ) ∑
i

occ

ni〈φi|Ĥ
0|φi〉 +

1
2 ∫ ∫ fxc[r, r′]δFδF′ -

1
2 ∫ ∫ F0(r)F0(r′)

|r - r′| + Exc[F0] - ∫Vxc[F0]F0 + Eii (5)

fxc[r, r′] ) 1
|r - r′| +

δ2Exc

δFδF′ (6)
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where ∆qA represents the Mulliken charge on atom A and γAB

is defined as

with FA(r) representing a normalized spherical density distribu-
tion on atom A. The effective Hamiltonian Ĥ0 in eq 5 is
represented in a minimal basis set using only valence atomic
orbitals, and the reference electron density F0 is given as a
superposition of atomic densities. Thus, the diagonal elements
correspond to the atomic KS eigenvalues, and the nondiagonal
elements are calculated in a two-center approximation

where φµ and φν denote the atomic KS orbitals and T̂ and Veff

represent the kinetic energy operator and the effective KS
potential, respectively. Therefore, within the DFTB approxima-
tion, the total energy functional reads

with the effective ion-ion repulstion Erep. By applying the
variation principle to this energy functional (eq 10), a general-
ized eigenvalue problem is obtained

where cν
i and εi represent the KS molecular orbital coefficients

and KS orbital energies and Hµν is defined as

where Sµν represents the overlap matrix. The computational
efficiency of the DFTB approach is based on the fact that all
necessary matrix elements are tabulated as functions of the
interatomic distance based on ab initio DFT calculations and
no integral evaluation is necessary.

In analogy with the full TDDFT formalism, the excitation
energies ω within the TDFTB method can be obtained as the
solution of the eigenvalue problem

where A and B represent matrices with the elements given by

and indices i,j and a,b label the occupied and virtual KS orbitals
with energies εi and εa, respectively. The coupling matrix
elements Kia,jb can be calculated in the framework of TDDFTB
using the generalized Mulliken approximation to the transition
densities and have the following form

Notice, that the form of the coupling matrix element is consistent
with the monopol approximation for the exchange-correlation
kernel Fxc in the ground state, and its evaluation also does not
require the integral calculation, which makes the TDDFTB
calculations highly efficient.22

In order to calculate the nonadiabatic couplings in the
framework of the TDDFTB method, we use an ansatz for the
excited state electronic wave function in terms of singly excited
configurations from the manifold of occupied KS orbitals to
virtual KS orbitals

where ci,a
K represents the CI coefficients and |Φi,a

CSF(r;R(t))〉 is
the singlet spin-adapted configuration state function (CSF)
defined as

with |ΦiR
a�(r;R(t))〉 and |Φi�

aR(r;R(t))〉 representing Slater deter-
minants with single excitations from occupied orbital i to virtual
orbital a with spin R or �, respectively.

As shown previously,11,12 for nonhybrid functionals without
exact exchange contribution, the CI coefficients ci,a

K giving rise
to mutually orthogonal electronic states can be calculated from
the eigenvectors of eq 13 and are given by

In order to calculate the nonadiabatic couplings according to
the discrete approximation in eq 3, the overlap between two CI
wave functions at times t and t + ∆ is needed

The overlap of the CSFs in eq 20 can be reduced to the overlap
of singly excited Slater determinants using eq 18, which can
be further reduced to the overlap of spatial KS orbitals φi(t)
and φi′′(t + ∆) at time steps t and t + ∆

1
2 ∑

AB

N

∆qAγAB∆qB (7)

γAB ) ∫ ∫ fxc[r, r′]FA(r)FB(r′) (8)

Hµ,ν
0 ) 〈φµ|T̂ + Veff[FA

0 + FB
0]|φν〉 (9)

E ) ∑
i

occ

ni ∑
µν

cµ
i Hµ,ν

0 cν
i + 1

2 ∑
AB

∆qAγAB∆qB + Erep

(10)

∑
ν

(Hµν - εiSµ,ν)cν
i ) 0 ∀i, ∀µ (11)

Hµν ) Hµν
0 + 1

2
Sµν ∑

C

(γAC + γBC)∆qC (12)

[ A B
B* A* ][X

Y ] ) ω[I 0
0 -I ][X

Y ] (13)

Aia,jb ) (εa - εi)δijδab + 2Kia,jb (14)

Bia,jb ) 2Kia,jb (15)

Kia,jb ) ∑
AB

qA
iaγABqB

jb (16)

|ΨK(r;R(t))〉 ) ∑
i,a

ci,a
K |Φi,a

CSF(r;R(t))〉 (17)

|Φi,a
CSF(r;R(t))〉 ) 1

√2
(|ΦiR

a�(r;R(t))〉 + |Φi�
aR(r;R(t))〉)

(18)

ci,a
K ) (εa - εi)

-1/2(Xia + Yia) (19)

〈ΨK(r;R(t))|ΨI(r;R(t + ∆))〉 )

∑
ia

∑
i'a'

ci,a*Kci',a'
I 〈Φi,a

CSF(r;R(t))|Φi',a'
CSF(r;R(t + ∆))〉 (20)
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〈Φi,a
CSF(r;R(t))|Φi',a'

CSF(r;R(t + ∆))〉 )

[〈φ1|φ1
′〉 · · · 〈φ1|φi'

′〉 · · · 〈φ1|φn'
′ 〉

l l l
〈φi|φ1

′〉 · · · 〈φi|φi'
′〉 · · · 〈φi|φn'

′ 〉
l l l

〈φn|φ1
′〉 · · · 〈φn|φi'

′〉 · · · 〈φn|φn'
′ 〉

][〈φ1|φ1
′〉 · · · 〈φ1|φa'

′ 〉 · · · 〈φ1|φn'
′ 〉

l l l
〈φa|φ1

′〉 · · · 〈φa|φa'
′ 〉 · · · 〈φa|φn'

′ 〉
l l l

〈φn|φ1
′〉 · · · 〈φn|φa'

′ 〉 · · · 〈φn|φn'
′ 〉

]
.

+ [〈φ1|φ1
′〉 · · · 〈φ1|φa'

′ 〉 · · · 〈φ1|φn'
′ 〉

l l l
〈φi|φ1

′〉 · · · 〈φi|φa'
′ 〉 · · · 〈φi|φn'

′ 〉
l l l

〈φn|φ1
′〉 · · · 〈φn|φa'

′ 〉 · · · 〈φn|φn'
′ 〉

][〈φ1|φ1
′〉 · · · 〈φ1|φi'

′〉 · · · 〈φ1|φn'
′ 〉

l l l
〈φa|φ1

′〉 · · · 〈φa|φi'
′〉 · · · 〈φa|φn'

′ 〉
l l l

〈φn|φ1
′〉 · · · 〈φn|φi'

′〉 · · · 〈φn|φn'
′ 〉

]
(21)

The underlined orbitals label the replacement of an occupied
orbital by a virtual orbital such as i f a and i′ f a′ at t and
t + ∆, respectively. The spatial KS overlap integrals can be
further reduced to the overlap integrals involving atomic basis
functions bk(t) and bm′ (t + ∆) and the MO coefficients cik(t) and
cjm′ (t + ∆)

The two sets of basis functions bk(R(t)) and bm′ (R(t + ∆)) are
centered at different positions R(t) and R(t + ∆) and therefore
do not form an orthonormal basis set. In order to calculate such
overlap matrix elements in the framework of the DFTB
approach, the calculation of the overlap matrix Sµν has to be
extended from the usual range which covers the region of typical
atom-atom distances to the range of very small distances.

Results and Discussion

In order to illustrate the applicability of our TDDFTB
nonadiabatic dynamics for the investigation of complex systems,
we present here the simulation of the nonadiabatic relaxation
of microsolvated adenine. From the experimental work in water
solution, it is known that adenine in water assumes two
tautomeric forms termed 9H-adenine and 7H-adenine.38

However, since 9H-adenine is the dominant form (∼78%) that
exhibits ultrafast excited state relaxation, we limit ourselves here
only to the study of its photodynamics. Our system consists of
the adenine molecule solvated by 26 water molecules. The initial
structure was prepared in several steps, starting with the
equilibration of a water box consisting of 561 water molecules
with 30 Å × 30 Å × 30 Å dimensions using constant-
temperature molecular dynamics at T ) 300 K and the TIP-3P
force field.39 After equilibration, the adenine molecule was
inserted in the center of the water box and further equilibrated
by using the AMBER force field40 for adenine. Subsequently,
the first solvation shell was isolated and optimized by using
the B3LYP functional41 combined with the triple-	 valence plus
polarization basis set (TZVP)42 as well as by using the DFTB
method. The optimized structure of microsolvated adenine
presented in Figure 1 shows that all nitrogen atoms of adenine
as well as the two hydrogen atoms of the amino group are
saturated by hydrogen bonds.

In order to check the accuracy of the TDDFTB method, the
absorption spectrum for the B3LYP-optimized structure has been
calculated both at the B3LYP/TZVP level as well as by using
TDDFTB. The comparison of the absorption spectra in Figure
2 demonstrates a qualitative agreement between the full TDDFT
and TDDFTB spectra and gave us confidence to carry out the
nonadiabatic dynamics simulations in the framework of TD-
DFTB. The first intense transition in TDDFT located at around
250 nm (cf. red arrow in Figure 2a) corresponds to the π-π*
transition within adenine. The analogous transition in TDDFTB
is located at around 260 nm (cf. Figure 2b). While the position
of the π-π* in both methods is very similar, the n-π* transition
within the B3YLP method is located at 240 nm above the π-π*,
but in TDDFTB, the n-π* transition is very close to the π-π*
one and is located at 268 nm. In fact, the relative position of
the n-π* and π-π* transition within TDDFTB is analogous
to the one found using the ab initio multireference perturbation
configuration interaction method (CIPSI) combined with the
PCM-IEF solvation model.43

In order to study the photodynamics of microsolvated adenine,
100 initial conditions have been sampled from a 10 ps classical
trajectory at T ) 300 K. The trajectories have been propagated
using our TDDFTB nonadiabatic dynamics starting in the third
excited state S3. Totally, seven excited states and the ground
electronic state have been included in the simulation. The time-
dependent excited state populations obtained from the ensemble
of 100 trajectories are shown in Figure 3. The initially populated

〈φi(t)|φj'′(t + ∆)〉 ) ∑
k)1

n

∑
m)1

n

cik(t)cjm′ (t + ∆) ×

〈bk(R(t))|bm′ (R(t + ∆))〉 (22)

Figure 1. The DFT/B3LYP-optimized structure of microsolvated
adenine.
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S3 state is depopulated with the time constant of 16 fs, and the
population is transiently transferred to the lower-lying S2 and
S1 states as well as, to a lesser extent, to several other
energetically close-lying states (S4-S7). Notice that no direct
population transfer from the initially occupied S3 state to the
ground electronic state occurs. The S0 state begins to be
continuously populated from the S2 and S1 states starting at ∼20
fs, with the full population transfer occurring on the time scale
of 200 fs. It should be emphasized that the nonadiabatic
dynamics of the microsolvated adenine is qualitatively similar
to the one of the isolated adenine simulated by using both the
high-level ab initio CI method37 and the semiempirical CI
method.15 However, the transition to the electronic ground state
in microsolvated adenine is significantly faster than that in the
gas phase (200 fs versus ∼550 fs15,37). Notice that previously

theoretically calculated lifetimes of adenine in the gas phase
are significantly shorter than the experimental ones.32 However,
the experimental values are strongly wavelength-dependent and
lie in the range between 1.2 and 9 ps (cf. ref 32). For the purpose
of comparison, we have also calculated the lifetimes of gas-
phase adenine in the frame of TDDFTB. The transition to the
ground state is again a two-step process, where the S2-S1

transition occurs with the time constant of 120 fs and the
S1-S0 transition exhibits a time constant of 11 ps. However,
the S1-S0 transition is strongly wavelength-dependent, which
means that it is highly sensitive to quantitative features of the
potential energy surfaces, which are difficult to reproduce by
available methods. The general trend of the shortening of the
lifetime in water is in agreement with the experiments on
adenine in solution.38

Thus, the nonradiative relaxation of microsolvated adenine
occurs in a two-step process, in which, first, the initially excited
π-π* state (S3) is depopulated on the time scale of 16 fs and,
subsequently, the ground state S0 is populated with the time
constant of 200 fs. Notice that the populations of the S1 and S2

states grow parallel (cf. Figure 3), and both of them are
depopulated as the population of the ground state grows. In
Figure 4, we present the electronic state energies along one
selected trajectory, showing that in the initial stage of the
dynamics, several excited states are very close to the initially
excited S3 state. After the initial excitation to the π-π*
electronic state, within the first 10 fs, the character of the
electronic state changes to n-π* (cf. insets at 0.25 and 7.25 fs
in Figure 4). This proximity of electronic states with different
character leads to the coupling, which induces several state
switchings before the system reaches the S1 electronic state after
∼75 fs. Subsequently, within ∼25 fs, the crossing with the
ground electronic state is reached, and the trajectory continues
to propagate in the ground electronic state. The high density of
electronic states in microsolvated adenine compared to that in
the gas-phase adenine increases the number of pathways which
can lead to the crossing with the ground electronic state and
thus leads to the shortening for the nonradiative relaxation.

Conclusion

We have presented the combination of the tight binding time-
dependent density functional theory (TDDFTB) with the Tully’s
surface hopping method. This method allows one to extend the

Figure 2. Comparison of the absorption spectra of microsolvated
adenine obtained using (a) full TDDFT with the hybrid B3LYP
functional and (b) the TDDFTB method. The inset shows the B3LYP/
TZVP-optimized structure used for spectrum calculation. The right
panels show the character of the main excitation contributing to the
first intense transition marked by red arrows.

Figure 3. Population of the ground and excited electronic states during
the nonadiabatic dynamics simulation for microsolvated adenine.

Figure 4. The electronic state energy along a selected nonadiabatic
trajectory in microsolvated adenine. The actual state in which the
trajectory resides is labeled by the green dashed line. The inset on the
left-hand side shows the dominant electronic configurations at 0.25
(π-π*) and 7.25 fs (n-π*).
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applicability of the TDDFT-based nonadiabatic dynamics into
the realm of complex molecular structures and nanostructures
due to the high computational efficiency of the TDDFTB
approach and the accuracy which is comparable with that of
the full TDDFT method.

We have illustrated our approach on the example of the
nonradiative relaxation of microsolvated adenine, taking into
account the first solvation shell. Our simulations have revealed
that the nonradiative transition to the ground electronic state
proceeds according to a two-step mechanism involving the
ultrafast relaxation of the initially excited π-π* state with a
lifetime of 16 fs and subsequent transition to the ground state
within 200 fs. Overall, the dynamics of microsolvated adenine
is thus faster than the one of gas-phase adenine.

Our results demonstrate that the TDDFTB nonadiabatic
dynamics represents a useful tool for the investigation of
photodynamics in complex systems which are beyond the reach
of ab initio methods. This opens the possibility to investigate
photoinduced dynamics in systems such as, for example,
biochromophores interacting with the protein environments or
solvent, light harvesting systems, biosensors, photonic nanoar-
chitectures, polymers, and so forth. The knowledge of the
mechanisms for nonradiative relaxation in these complex
systems is mandatory in order to tune their properties for future
applications.
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Eds.; World Scientific: Singapore, 2004; Vol. 15.

(3) Robb, M. A.; Garavelli, M.; Olivucci, M.; Bernardi, F. ReV. Comput.
Chem. 2000, 15, 87.

(4) Zewail, A. H. J. Phys. Chem. A 2000, 104, 5660.
(5) Tully, J. C. J. Chem. Phys. 1990, 93, 1061.
(6) Hartmann, M.; Pittner, J.; Bonačić-Koutecký, V. J. Chem. Phys.
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